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ABSTRACT 

 

The study of this theoretical work definitely adds extra four new dispersive shear-horizontal waves propagating in the 

transversely isotropic piezoelectromagnetic (PEM) plates of class 6 mm. In this study, the following mechanical, 

electrical, and magnetic boundary conditions at both the upper and lower free surfaces of the PEM plate are exploited: 

the mechanically free surface, continuity of both the electrical and magnetic inductions, and continuity of both the 

electrical and magnetic potentials. The obtained dispersion relations were also graphically studied and compared with 

previous results. Some interesting peculiarities were also discussed. It is well-known that the plate waves are frequently 

used for nondestructive testing and evaluation of thin films, further miniaturization of different technical devices based 

on PEM smart materials, and constitution of new technical devices such as filters, sensors, delay lines, switches, lab-on-

a-chip, etc.   

 

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 75.20.En, 75.80.+q, 81.70.Cv  

Keywords: transversely isotropic piezoelectromagnetics, magnetoelectroelastic plates, magnetoelectric effect, new 

dispersive plate SH-waves.  

 

 

INTRODUCTION  

 

Development of modern (free of the charge) electronics 

called spintronics requires intensive implementation of 

new phenomena. It is predicted that spintronics can 

completely substitute the convectional electronics indoor 

only in several decades in the best case. It is expected that 

some found new phenomena can even accelerate the 

spintronics realization. The time period between the 

discovery of some competitive phenomena and their 

realization in some smart technical devices must be also 

shortened. This theoretical report relates to the first 

problem of creation of new phenomena in order that the 

research community can be familiar with them and 

therefore, can incorporate them in modern electronics by 

the way of creation of novel technical devices based on 

some suitable new phenomena. It is thought that a class of 

the magnetoelectric smart materials such as 

piezoelectromagnetics (magnetoelectroelastics) is actually 

apt for spintronics and can even provide more possibilities 

for revealing new phenomena. This report has a purpose 

to introduce new knowledge coupled with the discovery 

of new wave phenomena. It is obvious that this 

knowledge can be obtained only by the way of 

development of theoretical knowledge. The theory 

developed below can be compared with the previously 

found phenomena (Zakharenko, 2015a; Zakharenko, 

2015b; Zakharenko, 2015c; Zakharenko, 2013a) and 

actually enriches theoretical knowledge. This knowledge 

was not reviewed in the single existing review by 

Zakharenko (2013b) on the wave phenomena in 

piezoelectromagnetics and represents the additional 

discovery to those obtained in book by Zakharenko 

(2012a).  

 

It was recently found in theoretical paper (Zakharenko, 

2015b) that the magnetoelectric effect characterized by 

the electromagnetic constant α can demonstrate a 

dramatic influence on the existence of the shear-

horizontal surface acoustic waves (SH-SAWs) 

propagating in the transversely isotropic 

magnetoelectroelastics. However, the surface waves 

require the utilization of bulk piezoelectromagnetics 

(magnetoelectroelastics) that can be used in constitution 

of smart technical devices with a high level of integration. 

Further device miniaturization requires some 

incorporation of smart material thin films or plates. The 

plate SH-waves can be used in filters, sensors, actuators, 

delay lines, lab-on-a-chip, etc. Indeed, 

piezoelectromagnetic smart materials can provide co-

influence between the electrical and magnetic subsystems 

through the mechanical subsystem. This can explain their Corresponding author e-mail:  aazaaz@inbox.ru 
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growing popularity in various applications. However, it is 

frequently met that some strongly piezoelectromagnetic 

materials can have some bulk, surfacial, and interfacial 

defects, i.e. they can be brittle. Therefore, complex non-

destructive testing and evaluation of such materials by 

ultrasonic waves can be irreplaceable. Also, these 

materials are promising for active control of sound and 

vibration, ultrasonic medical imaging, etc. They can 

categorically have desirable frequency response, high 

resolution, and generate large forces. This is highly-called 

for modern technologies and aerospace industry to 

constitute transducers such as actuators and sensors. Also, 

wireless sensorics (Durdag, 2009) is the other intrigues 

subject of application of smart materials because SH-

waves can possess the highest sensitivity. It is already 

well-known that piezoelectromagnetics instead of 

conventional piezoelectrics are preferable for noncontact 

generation and detection of different SH-waves. The 

noncontact method (Hirao and Ogi, 2003; Ribichini et al., 

2010; Thompson, 1990) based on the electromagnetic 

acoustic transducer (EMAT) is the right one to study the 

magnetoelectric SH-wave phenomena that can be found 

in bulk magnetoelectroelastics and two-dimensional 

samples. This research report has no purpose to mention 

all the promising possibilities for piezoelectromagnetic 

(composite) materials. Some properties of such smart 

magnetoelectric materials and their applications can be 

found in selected review papers (Fiebig, 2005; Özgür et 

al., 2009; Pullar, 2012; Srinivasan, 2010). Also, it is 

necessary to mention that piezoelectromagnetic 

composites possessing stronger magnetoelectric effect are 

preferable for commercial applications in comparison 

with piezoelectromagnetic monocrystals. However, recent 

discovery of ferroelectric monocrystals (Kimura, 2012) 

possessing commercially reasonable magnetoelectric 

effect states that composites are not single solution. The 

study of this report does not require that composites or 

monocrystal must have a strong magnetoelectric effect. It 

will be demonstrated below that a material with a fittingly 

weak magnetoelectric effect can be preferable. Indeed, 

this weak effect can significantly slow down the new SH-

waves and even act on the wave existence (Zakharenko, 

2015b).    

 

It is also indispensable to mention the famous SH-SAWs 

existing in the transversely isotropic piezoelectrics or 

piezomagnetics. They are known as the surface Bleustein-

Gulyaev (BG) waves (Bleustein, 1968; Gulyaev, 1969) 

theoretically discovered to the end of the 1960s. The 

propagation of this type of the nondispersive SH-SAWs is 

supported by the piezoelectric or piezomagnetic effect in 

piezoelectrics or piezomagnetics, respectively. It is 

obvious that the surface BG-waves do not relate to the 

magnetoelectric effect. Piezoelectromagnetics can 

actually possess simultaneously all of these three 

mentioned effects such as the piezoelectric, 

piezomagnetic, and magnetoelectric effects. As a result, 

some rivalry among the effects leads to the possible 

existence of more than ten new SH-SAWs (Zakharenko, 

2015b; Zakharenko, 2015c; Zakharenko, 2013a; 

Zakharenko, 2013b; Zakharenko, 2010a; Zakharenko, 

2011; Zakharenko, 2012b; Melkumyan, 2007). However, 

only several of them can be associated with the key 

influence of the magnetoelectric effect. Indeed, as soon as 

the electromagnetic constant α is equal to zero, some 

piezoelectromagnetic new SH-SAWs cannot exist. This 

fact occurs for the fifth new SH-SAW discovered by 

Zakharenko (2010a) and further studied in (Zakharenko, 

2011), eighth and tenth new SH-SAWs (Zakharenko, 

2015b; Zakharenko, 2015c; Zakharenko, 2013a). For α = 

0, the fifth new SH-SAW cannot propagate. However, it 

was demonstrated in (Zakharenko, 2015b) that the 

dependence of the eighth and tenth new SH-SAWs is 

more dramatic because small values of the 

electromagnetic constant α can radically slow down their 

propagation speeds. Moreover, these waves cannot exist 

for nonzero values of the α.   

 

This theoretical report discovers several new dispersive 

SH-waves propagating in the transversely isotropic 

magnetoelectroelastic plates. Some of the plate new SH-

waves relate to the tenth new SH-SAW in the limit case 

when the plate thickness approaches an infinity (the case 

of bulk sample.) A set of technical applications still 

requires knowledge of the wave properties of bulk and 

thin-film magnetoelectroelastic (composite) samples. 

Thus, the following section acquaints the reader with the 

theoretical background leading to the existence of new 

solutions.  

 

Theoretical foundation  

 

Proper choice of the thermodynamic functions and 

thermodynamic variables allows constitution of suitable 

consistent equations (Zakharenko, 2012a) for a 

piezoelectromagnetic solid. For this case there can be 

chosen the following apt three thermodynamic functions: 

stress σij, electrical induction Di, and magnetic induction 

Bi, where the indices i and j run from 1 to 3. For the case 

of small perturbations, three independent thermodynamic 

variables are: the strain  ijjiij xUxU  5.0 , 

electrical field 
ii xE   , and magnetic field 

ii xH   , where Ui and xi are the components of 

the mechanical displacements and real space, 

respectively. Also, φ and ψ are the electrical and magnetic 

potentials. These thermodynamic functions and variables 

thermodynamically define all the material constants of the 

piezoelectromagnetics. As a result, it is possible to 

constitute the coupled equations of motion in the quasi-

static approximation because the speed of the 

electromagnetic waves is approximately five orders larger 

than that of the acoustic waves. For this purpose, the 
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governing equations for mechanical equilibrium, 

electrostatic equilibrium, and magnetostatic equilibrium 

must be written. Finally, three coupled equations of 

motion in the differential form are as follows: 
22 tUx ijij   , 0 ji xD , and 

0 ji xB , where ρ and t are the material mass 

density and time, respectively. These equations can be 

used for theoretical investigations of the in-plane and anti-

plane polarized wave in any possible propagation 

direction of a piezoelectromagnetics of any known 

symmetry. However, it is useful to exploit the plane wave 

solutions to rewrite the equations of motion in the tensor 

form (Zakharenko, 2012a). Let’s treat the concrete case of 

the SH-wave propagation in the transversely isotropic 

piezoelectromagnetic plate.  

 

To study SH-wave propagation, the transversely isotropic 

(6 mm) materials are popular for theoretical and 

experimental investigations because many suitable cuts 

and propagation directions can be found in the solids. The 

suitable propagation directions must satisfy the condition 

of perpendicularity to the sixfold axis of crystal symmetry 

(Gulyaev, 1998). Regarding to the SH-waves, they must 

be polarized along the sixfold symmetry axis. These 

conditions are true for bulk and thin-film samples. Let’s 

consider the acoustic wave propagation managed along 

the x1-axis of the rectangular coordinate system. For the 

SH-waves, the polarization must be directed along both 

the x2-axis and the sixfold symmetry axis. The x3-axis 

coincides with the normal to the cut surface. The 

coordinate beginning is situated at the middle of the plate 

thickness. So, the upper and lower surfaces of the 

piezoelectromagnetic plate can be reached at x3 = + d and 

x3 = – d, respectively.  

 

The considered propagation direction allows the existence 

of pure waves (Auld, 1990; Dieulesaint and Royer, 1980; 

Lardat et al., 1971). This means that the propagation of 

pure SH-wave is coupled with both the electrical and 

magnetic potentials and there also propagates the purely 

mechanical Rayleigh wave with the in-plane polarization. 

This is possible because in this case the coupled equations 

of motion written in the convenient tensor form (modified 

Green-Christoffel equation) are separated into two 

independent parts (Zakharenko, 2012a). This report has 

an interest in investigation of the propagation of pure SH-

wave in the piezoelectromagnetic plate. Therefore, only 

the following part of the equations of motion can be taken 

into account:  
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where p = 1 + m3
2
 and Vt4 = sqrt(C/ρ) is the speed of 

purely mechanical bulk SH-wave; ρ is the material mass 

density and m3 is the one of the directional cosines: m1 = 

1, m2 = 0, and m3 = m3. Also, the phase velocity Vph must 

be found, Vph = ω/k, where ω and k are the angular 

frequency and the wavenumber in the propagation 

direction.  

 

In this set of three homogeneous equations written in 

matrix form (1), the following material parameters 

(Zakharenko, 2010a; Zakharenko, 2012a; Zakharenko, 

2013a) contribute: the elastic stiffness constant C, 

piezoelectric constant e, piezomagnetic coefficient h, 

dielectric permittivity coefficient ε, magnetic permeability 

coefficient μ, and electromagnetic constant α. Also, 

equation (1) contains the eigenvector components such as 

U
0
, φ

0
, and ψ

0
. They must be found for each known value 

of the eigenvalue m3. Expanding the determinant 

associated with the square matrix of coefficients in 

equation (1), a sextic polynomial in a single indeterminate 

m3 can be written. This obtained secular homogeneous 

equation can reveal the following six polynomial roots:  

 

j)4,2(

3

)3,1(

3  mm ,  2)6,5(

3 1j temph VVm    (2) 

 

It is clearly seen that the fifth and sixth polynomial roots 

depend on the shear-horizontal bulk acoustic wave (SH-

BAW denoted by Vtem) that is coupled with both the 

electrical (φ) and magnetic (ψ) potentials and defined by  

 

  2/121 emtem KCV       (3) 
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It is natural that SH-BAW velocity (3) is a function of the 

coefficient of the magnetoelectromechanical coupling 

(CMEMC) defined by expression (4). It is demonstrated 

that the CMEMC contains three coupling mechanisms 

such as   he  ,   he  , and  2  . They 

were recently discussed in short report by Zakharenko 

(2013c).  

 

With equations’ set (1), each found eigenvalue m3 can 

provide the corresponding eigenvector. The suitable 

forms of the eigenvectors are discussed in paper by 

Zakharenko (2014a). Thence, the determined explicit 

forms of the components of the first four eigenvectors 

(Zakharenko, 2012a; Zakharenko, 2010a) read:   
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The fifth and sixth sets of the eigenvector components are 

more complicated. They can be expressed as follows:   

 

 

 
 
   

 








































































































































 he

he
CK

he

KK

KK

Che

K

CKeh

CKh

CKheUU

em

em

mem

em

em

em

em

2

22

22

22

2

2

22

2

(6)0

(6)0

(6)0

(5)0

(5)0

(5)0

1

 (6) 

 

where  
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It is obvious that these three coupling mechanisms of the 

CMEMC mentioned after expression (4) are present in 

eigenvectors (6) and the other expressions such as 

equalities (7) and (8). They will be met in the further 

analysis. They also represent important coupling 

mechanisms that must compete with each other. In 

expression (9), the nondimensional parameter 
2

mK  is 

called the coefficient of the magnetomechanical coupling 

(CMMC). This coefficient is also used to characterize a 

pure piezomagnetics. The other nondimensional 

parameter denoted by 
2

K  (10) contains the 

electromagnetic constant α. The reader can also check that 

eigenvectors (5) and (6) are coupled via the second 

coupling mechanism such as   he  . This can be 

illuminated by the following equalities:  

 

 hehehe  )5(0)5(0)1(0)1(0
 (11) 

 

The determined eigenvalues and eigenvectors allow 

composition of the complete parameters. These complete 

parameters can be naturally written in the plane wave 

forms. They are called the complete mechanical 

displacement U
Σ
 directed along the x2-axis, complete 

electrical potential φ
Σ
, and complete magnetic potential 

ψ
Σ
. Using the index I = 2, 4, 5, it si possible to write down 

that U2
Σ
 = U

Σ
, U4

Σ
 = φ

Σ
, and U5

Σ
 = ψ

Σ
. Thus, these three 

complete parameters can be compactly written in the 

following plane wave form:  
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where j = (– 1)
1/2

 is the imaginary unity.  

 

In expression (12), the exponent can be introduced via the 

hyperbolic cosine and hyperbolic sine: 

      sinhcoshexp . Thence, it is possible 

to rewrite the complete parameters for the case of Vph < 

Vtem. Therefore, the parameters U
Σ
, φ

Σ
, and ψ

Σ
 can be 

inscribed in the following convenient form:  
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where F01 = F
(1)

 + F
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 + F
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 + F
(4)
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 + F
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.  

 

It is necessary to state that expressions (12) and (13) are 

only applicable within the plate thickness, 

dxd  3 . In these expressions, the corresponding 

weight factors can be determined from the applied 

mechanical, electrical, and magnetic boundary conditions 

that can be applied at both the sides of the 

piezoelectromagnetic plate. Let’s assume that the upper 

(x3 = + d) and lower (x3 = – d) surfaces of the transversely 

isotropic PEM plate are in a contact with a vacuum. 

Therefore, the material parameters of the latter continuum 

must be also treated. For a vacuum, the dielectric 

permittivity and magnetic permeability constants are ε0 = 

0.08854187817×10
–10

 [F/m] and μ0 = 1.25663706144×10
–

6
 [N/A

2
], respectively. Using the subscript “f” for the free 

space (vacuum) it is potential to employ the well known 

Laplace equations φf = 0 and ψf = 0 rewritten as 

follows:   00

2

3

2

1  fkk   and   00

2

3

2

1  fkk  . 

The electrical and magnetic potentials above the upper 

surface (x3 = + d) of the PEM can be written in the 

following forms:     txkxkF E

f   1131

)0(

0 jexpexp  

and      dxtxkxkF M

f  31131

)0(

0  ,jexpexp  . 

Below the lower surface (x3 = – d) they are: 
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both the potentials must exponentially decay in a vacuum 

when x3 > + d and x3 < – d.  

 

Let’s use homogeneous boundary conditions at the upper 

(x3 = + d) and lower (x3 = – d) surfaces of the PEM plate. 

This means that they are the same at either surface. The 

mechanical traction-free boundary condition at the free 

surfaces relates to the normal component of the stress 

tensor: σ32 = 0. The electrical and magnetic boundary 

conditions are the continuity of both the electrical and 

magnetic potentials (φ = φ
f
 and ψ = ψ

 f
) and the continuity 

of the normal component of both the electrical and 

magnetic displacements (D3 = D
f
 and B3 = B

f
) where the 

superscript “f” relates to the free space (vacuum.) All the 

possible boundary conditions are perfectly described in 

Al’shits et al. (1992).  

 

Next, it is natural to perfume some transformations to 

exclude the vacuum weight factors FE and FM  in order to 

deal only with six homogeneous equations in six 

unknowns F
(1)

, F
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, F
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, F
(4)

, F
(5)

, and F
(6)

. Using 

equations (1) and (13), these six homogeneous equations 

corresponding to the boundary conditions can be rewritten 

as those in only four unknowns F01, F02, F03, and F04. 

With  21 temph VVb  , these six homogeneous 

equations (three ones for the upper surface at x3 = + d and 

the rest three for the lower surface at x3 = – d) are written 

as follows:  
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To further transform these equations, eigenvector 

components (5) and (6) together with the following 

equalities are useful:  
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After the transformations, these six homogeneous 

equations take the following forms:  
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It is a standard procedure for the plate wave study that the 

obtained six homogeneous equations in four unknowns 

F01, F02, F03, and F04 written above in the final forms must 

be separated into two independent sets of homogeneous 

equations. They are three equations in unknowns F01 and 

F03 and the other three equations in unknowns F02 and 

F04. This is possible because there are three pairs of 

equations that can be transformed: equations (26) and 

(29), (27) and (30), and (28) and (31). So, the first three 

equations read:  
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The second independent set of three homogeneous 

equations then read:  
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It is obvious that these two independent sets of three 

homogeneous equations in two unknowns must provide 

some solutions. For this purpose, equations (32), (33), and 

(34) must be consistent from each other, namely one of 

three equations must represent a sum of the rest two. The 

same must occur for the second independent set of three 

equations from (35) to (37). Therefore, the following two 

sections provide new solutions of new dispersive SH-

waves propagating in the piezoelectromagnetic plates.  

 

The first pair of new dispersive SH-waves  

 

This case relates to the third coupling mechanism of the 

CMEMC such as  2  . It is natural to multiply 

equations (32) and (34) by the factors of 

 2  /   he   and ε0µ/µ0α, respectively. Therefore, 

the first set of the equations can be readily transformed 

into the following one:  
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It is clearly seen that these three equations are now 

actually not independent from each other. Indeed, they are 

consistent because equation (39) represents a sum of 

equations (38) and (40). Consequently, these two 

equations must be successively subtracted from main 

equation (39). This procedure results in the following 

dispersion relation, namely the dependence of the velocity 

Vnew37 of the thirty seventh new SH-wave on the 

normalized plate half-thickness kd:  

 

   

0
1

1tanh1

2

22

2

0

2

37

2

37














 

em

m

temnewtemnew

K

KK

VVkdVV






 (41) 

 

The same simple transformations can be also applied to 

the second set of the equations. Therefore, the second 

three equations also become consistent and read as 

follows:  
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A successive subtraction of equations (42) and (44) from 

main equation (43) definitely leads to a new dispersion 

relation. The dependence of the velocity Vnew38 of the 

thirty eighth new SH-wave on the normalized parameter 

kd can be introduced as follows:  
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(45) 

 

One can check that in the limit case of kd → ∞, i.e. the 

hyperbolic tangent approaches the unity, both the 

obtained dispersion relations reduce to the relatively 

simple formula for calculation of the nondispersive tenth 

SH-SAW velocity recently discovered in theoretical work 

Zakharenko (2015c). This velocity is defined by  
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The second pair of new dispersive SH-waves  

 

It is obvious that this case relates to the second coupling 

mechanism of the CMEMC such as   he  . This 

means that equation (32) stays unchanged. Besides, rest 

equations (33) and (34) must be properly transformed. 

These transformations are also simple to get the case of 

consistent equations. Therefore, the first three equations 

can be written down in the following final forms:  

 

      0sinh
1

sinh 032

2

01 






 

 bkdF
K

K
bkdFhe

em

em  (47) 

 

       0coshsinhcosh

sinh

032

22

01

2

0

2

0

01








 






bkdF
K

KK
kdkdF

e
kdFe

em

mem






 

(48) 
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It is possible to use equation (47) to release the final 

dispersion relation for this case. Indeed, equation (47) can 

be subtracted from a sum of equations (48) and (49). This 

results in a complicated dispersion relation. Thus, the 

propagation velocity Vnew39 of the thirty ninth new SH-

wave in the piezoelectromagnetic plate can be calculated 

from the following dispersion relation:  
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(50) 

 

To obtain the dispersion relation written above, the 

following relation between the amplitude coefficients F01 

and F03 borrowed from equation (47) was used:  
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It is now necessary to transform in the same manner the 

second set of three homogeneous equations from (35) to 

(37). As a consequence, these three equations take the 

following forms:  
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(54) 

 

These three equations written above are also consistent. 

Their consistency leads to an extra dispersion relation. 

Here, the same mathematical procedure plays a role that 

was applied in order to obtain the previous dispersion 

relation. Accordingly, the velocity Vnew40 of the fortieth 

new SH-wave can be evaluated from the following 

equation:  

 



Canadian Journal of Pure and Applied Sciences 3898 

  

   01tanh
1

tanh11

1tanh
1

tanh11

1

2

40

2

22
2

40

2

0

0

2

40

2

22
2

40

2

40











































































































































tem

new

em

mem

tem

new

tem

new

em

em

tem

new

tem

new

V

V
kd

K

KK
kd

V

V

he

e

V

V
kd

K

KK
kd

V

V

he

h

V

V















 

(55) 

 

In this dispersion relation, dependence (52) between the 

F02 and F04 was used. This can be defined by  
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It is possible to analytically investigate the limit case of 

kd → ∞. This case significantly simplifies both dispersion 

relations (50) and (55). The resulting equation serves for 

evaluation of the eleventh new SH-SAW velocity recently 

discovered by Zakharenko (2015c). So, it is practical to 

write down this formula below:   
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It is decisive to state that this theoretical study has 

discovered four new dispersion relations given by 

formulae (41), (45), (50), and (55). Some of them look 

like complicated expressions. Therefore, it is required to 

graphically illustrate the velocity dependencies on the 

value of kd by the means of the use of real 

piezoelectromagnetic composite materials.  

 

Comparative graphical study  

 

The chosen piezoelectromagnetic composites for the 

further study are BaTiO3–CoFe2O4 and PZT-5H–

Terfenol-D. The material parameters for the first 

composite are: ρ = 5730 [kg/m
3
], C = 4.4  10

10
 [N/m

2
], e 

= 5.8 [C/m
2
], h = 275.0 [T], ε = 56.4  10

–10
 [F/m], μ = 

81.0  10
–6

 [N/A
2
]. Those for the second are: ρ = 8500 

[kg/m
3
], C = 1.45  10

10
 [N/m

2
], e = 8.5 [C/m

2
], h = 83.8 

[T], ε = 75.0  10
–10

 [F/m], μ = 2.61  10
–6

 [N/A
2
]. These 

material parameters were also used in several studies 

(Zakharenko, 2013d; Zakharenko, 2013e; Zakharenko, 

2014b). The utilization of the same material parameters 

can be useful because it allows comparison of different 

results. This graphical study is based on computation of 

dispersion relations (41), (45), (50), and (55) obtained in 

this theoretical work. The calculated dependencies of the 

propagation velocities on the nondimensional parameter 

kd are graphically shown in Figures 1 and 2, where k is 

the wavenumber in the propagation direction and d is the 

plate half-thickness.  

 

Figures 1a and 1b show dispersion relations (41) and (45), 

namely the fundamental modes of the dispersive SH-

waves propagating in the PEM plates for the studied 

piezoelectromagnetic composite materials PZT-5H–

Terfenol-D and BaTiO3–CoFe2O4, respectively. The 

dispersion relations are calculated for various values of 

the nondimensional parameter α
2
/εµ. It is clearly seen in 

figure 1 that for both the studied magnetoelectroelastic 

composites there exist a “silence” zone for the normalized 

velocity Vnew37/Vtem (thick lines) because the velocity 

Vnew37 starts with its zero value at some nonzero value of 

the parameter kd. One can find in figures 1a and 1b that 

the larger silence zone occurs for smaller value of the 

parameter α
2
/εµ because the velocity Vnew37 has to start 

with a larger value of the kd. Concerning the normalized 

velocity Vnew38/Vtem also shown in the figures by the 

thinner lines, it can start at a small value of the kd when 

Vnew38 > Vtem can occur. However, this study has an 

interest in the case of Vnew38 < Vtem and therefore, only this 

case is shown in the figures. At large values of the kd, the 

values of both the dispersive SH-wave velocities Vnew37 

and Vnew38 approach the value of nondispersive SH-SAW 

velocity Vnew10 (46) that is clearly seen in the figures. 

There is also one peculiarity for these SH-waves 

propagating with the velocities Vnew37, Vnew38, and Vnew10: 

they can exist when the value of the parameter α
2
/εµ is 

larger than some threshold value denoted by (α
2
/εµ)th. For 

the studied composites, these threshold values are small: 

(α
2
/εµ)th ~ 4.8  10

–8
 for PZT-5H–Terfenol-D and 

(α
2
/εµ)th ~ 5.0  10

–9
 for BaTiO3–CoFe2O4.  

 

This peculiarity mentioned above can be used for 

constitution of some technical devices and also exist in 

the other study developed by Zakharenko (2015a). It is 

possible to discuss that some piezoelectromagnetic 

switches can be manufactured exploiting this peculiarity 

of the SH-wave existence: the SH-wave propagation for 

some suitable value of α
2
/εµ > (α

2
/εµ)th can represent the 

ON-regime and α
2
/εµ < (α

2
/εµ)th without any SH-wave 

propagation can originate the OFF-regime. These regimes 

can be also appropriate for the computer logics or data 

storage devices because the ON- and OFF-regimes can 

correspond to “1” and “0” states, or vice versa, 

respectively. An external magnetic field as an example 

can be responsible to cause and control the 

aforementioned regimes. Also, it is blatant that some 

values of α
2
/εµ being slightly larger than the value of 

(α
2
/εµ)th can represent an interest for the reader regarding 

very slow PEM-SH-wave propagation with the speeds 

Vnew37 and Vnew38. It is hoped that very slow speeds of the 
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acoustic SH-waves coupled with both the electrical and 

magnetic potentials can be experimentally studied.  
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Fig. 1. The normalized velocities Vnew37/Vtem (thick lines, 

formula (41)) and Vnew38/Vtem (thinner lines, formula (45)) 

of the fundamental modes of the dispersive SH-waves 

propagating in the PEM plates versus the normalized 

value of the half-thickness kd: (a) PZT-5H–Terfenol-D, 

where (1) α
2
/εµ = 5.0625  10

–8
, (2) 3.0  10

–8
, (3) 2.5  

10
–7

, (4) 1.0  10
–6

; (b) BaTiO3–CoFe2O4, where (1) α
2
/εµ 

= 5.329  10
–9

, (2) 6.4  10
–9

, (3) 1.0  10
–8

, (4) 2.5 10
–7

. 

 

It is expected that properly performed experiments will 

allow researchers to actually reach some slow speeds 

representing only several percents from the SH-BAW 

speed Vtem. This possibility and the structural geometry 

when plates are used can be called for further 

miniaturization of different technical devices, for 

instance, delay lines based on the new dispersive SH-

wave.  

 

It is necessary to state right away that no nondispersive 

Zakharenko waves (Zakharenko, 2005a; Zakharenko, 

2005b; Zakharenko, 2007) were recorded in the present 

study. This fact differs this study from the other recently 

carried out by Zakharenko (2015a). The nondispersive 

Zakharenko waves mathematically represent all the 

extreme points in dispersion relation curves and can be 

met in many layered (Zakharenko, 2005a; Zakharenko, 

2005b) and quantum (Zakharenko, 2005b; Zakharenko, 

2007) systems. In the physical sense, these waves 

represent the dispersion loss within a dispersive wave 

mode and divide this dispersive wave mode into one, two, 

or several sub-modes (modes) of dispersive waves with 

different dispersion types. Indeed, one can find that 

Figures 1 and 2 do not demonstrate any extreme points. 

 

Figure 2 shows the complicated dispersion relations (the 

fundamental modes for the case of Vnew39 < Vtem and Vnew40 

< Vtem) related to cases (50) and (55). This figure 

demonstrates the behaviors of the second pair of the new 

SH-wave velocities Vnew39 and Vnew40, namely their 

changes versus the normalized value of the half-thickness 

kd. Figures 2a and 2b show the dispersion relations for 

PZT-5H–Terfenol-D composite and Figures 2c and 2d 

show the ones for BaTiO3–CoFe2O4 composite. For both 

the used composites, the complicated dispersion relations 

shown in Figures 2a and 2c for different values of the 

normalized parameter α
2
/εµ need a clarification for the 

reader. Let’s refer to Figure 3 that graphically shows the 

nondispersive SH-SAWs in order to better understand the 

dispersion relations. Figure 3 shows the normalized 

velocities VBGM/Vtem (dotted lines), Vnew9/Vtem (thin lines) 

and Vnew11/Vtem (thick lines) in dependence on the 

normalized parameter α
2
/εµ for analysis and comparison. 

It is clearly seen in Figure 3 that the new SH-SAW 

velocity Vnew9 studied in (Zakharenko, 2015a) can cross 

the surface Bleustein-Gulyaev-Melkumyan wave velocity 

VBGM. This occurs at some value of α
2
/εµ = (α

2
/εµ)BGM 

(Zakharenko, 2015a). Concerning the other new SH-SAW 

velocity Vnew11, it can touch the SH-BAW velocity Vtem at 

two values of the parameter α
2
/εµ. It was found in 

numerical experiments that the first touch (Vnew11 = Vtem) 

occurs at the same value of α
2
/εµ = (α

2
/εµ)BGM. For this 

study, it is convenient to denote this value by (α
2
/εµ)tem1 to 

further operate with it, where (α
2
/εµ)tem1 = (α

2
/εµ)BGM. The 

second touch (Vnew11 = Vtem) clearly illuminated in figure 

3b takes place when α
2
/εµ → 1. It is natural to denote it 

by (α
2
/εµ)tem2. It is flagrant that at these two values, the 

new SH-SAW with velocity Vnew11 cannot propagate 

because there is Vnew11 = Vtem. This means that here the 

SH-BAW becomes stable and it is hard to cause any 

instability in order to get the SH-SAW propagation. So, 

these two values of (α
2
/εµ)tem1 and (α

2
/εµ)tem2 play their 

important roles in the dispersion relations shown in 
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Figures 2a and 2c. Indeed, these two values actually split 

the dependence Vnew11(α
2
/εµ) into three following parts for 

either studied composite: the first part is confined 

between α
2
/εµ > 0 and α

2
/εµ < (α

2
/εµ)tem1, the second is 

for the following interval (α
2
/εµ)tem1 < α

2
/εµ < (α

2
/εµ)tem2, 

and the last is for α
2
/εµ > (α

2
/εµ)tem2 with the limitation of 

α
2
/εµ < 1. It is necessary to state right away that the first 

part represents a practical interest because the value of 

α
2
/εµ is generally very small. However, it is possible that 

for some PEM composites, the value of (α
2
/εµ)tem1 can be 

also small enough and it is possible to reach the second 

part for investigations. For the studied composites, it is 

useful to give these two threshold values of α
2
/εµ: 

(α
2
/εµ)tem1 ~ 0.2809 and (α

2
/εµ)tem2 ~ 0.998940281 for 

PZT-5H–Terfenol-D, (α
2
/εµ)tem1 ~ 0.159201 and 

(α
2
/εµ)tem2 ~ 0.997581464 for BaTiO3–CoFe2O4. Let’s 

return to the dispersion relations shown in Figures 2a and 

2c. For either studied composite, the dispersion relations 

for α
2
/εµ < (α

2
/εµ)tem1 represent curves of the Vnew39 versus 

the parameter kd. These dependencies begin with the 

Vnew39 = 0 at some corresponding values of kd = (kd)th > 0. 

This means that there is a “silence” zone for the 

normalized velocity Vnew39/Vtem for 0< kd < (kd)th. Then, 

kd → ∞ leads to Vnew39 → Vnew11. Therefore, it is possible 

to state that the dispersive SH-wave velocity Vnew39 as the 

function of kd always increases from its zero value up to 
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Fig. 2. The normalized velocities Vnew39/Vtem (formula (50)) and Vnew40/Vtem (formula (55))  of the fundamental modes of 

the dispersive SH-waves propagating in the PEM plates versus the normalized value of the half-thickness kd: (a) Vnew39 

in PZT-5H–Terfenol-D, where (1) α
2
/εµ = 1.0  10

–6
, (2) 0.04, (3) 0.16, (4) 0.2809, (5) 0.281961, (6) 0.36, (7) 0.64, (8) 

0.81, (9) 0.9801, (10) 0.998001, (11) 0.99980001, (12) 0.9999800001, (13) 0.999998000001; (b) Vnew40 in PZT-5H–

Terfenol-D, where (1) α
2
/εµ = 1.0  10

–8
, (2) 0.09, (3) 0.99980001, (4) 0.9999800001, (5) 0.999998000001; (c) Vnew39 

in BaTiO3–CoFe2O4, where (1) α
2
/εµ = 1.0  10

–8
, (2) 0.09, (3) 0.159201, (4) 0.16, (5) 0.64, (6) 0.81, (7) 0.9801, (8) 

0.998001, (9) 0.99980001, (10) 0.9999800001, (11) 0.999998000001; (d) Vnew40 in BaTiO3–CoFe2O4, where (1) α
2
/εµ 

= 0.998001, (2) 0.99980001, (3) 0.9999800001, (4) 0.999998000001.  
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Vnew39 = Vnew11. This means that this case is for the 

dispersion type Vg > Vph, where Vph and Vg are the phase 

and group velocities, respectively. In this case, Vph 

represents Vnew39.  

   

 
 

 
 

Fig. 3. The normalized velocities VBGM/Vtem (dotted lines), 

Vnew9/Vtem (thin lines) and Vnew11/Vtem (thick lines) of the 

nondispersive SH-waves propagating in the PEMs such as 

PZT-5H–Terfenol-D (black lines) and BaTiO3–CoFe2O4 

(gray lines) versus the normalized parameter α
2
/εµ. (a) 

The main dependencies are shown, where the insertion 

demonstrates the crossing points between the velocities 

VBGM and Vnew9. (b) The complicated dependencies of 

Vnew9/Vtem and Vnew11/Vtem for α
2
/εµ → 1 are shown.  

 

The other dispersion type, namely Vg < Vph exists for 

(α
2
/εµ)tem1 < α

2
/εµ < (α

2
/εµ)tem2. For these values of α

2
/εµ, 

the velocity Vnew39 representing the Vph always decreases 

from some maximum value at kd = 0 to Vnew39 = 0 at some 

finite value of kd = (kd)cut > 0. This manifests that there is 

a cut-off for each fundamental mode corresponding to 

values of α
2
/εµ satisfying the case of (α

2
/εµ)tem1 < α

2
/εµ < 

(α
2
/εµ)tem2. As soon as the value of α

2
/εµ is passed into the 

third part with (α
2
/εµ)tem2 < α

2
/εµ < 1, the first dispersion 

type of Vg > Vph is actual anew. For (α
2
/εµ)tem2 < α

2
/εµ < 1, 

the velocity Vnew39 commences with some nonzero value 

at kd = 0 and approaches the velocity Vnew11 at kd → ∞. 

The fundamental modes for this third case look like there 

is neither a “silence” zone nor a cut-off. It is now possible 

to make a statement that at these two threshold values of 

(α
2
/εµ)tem1 and (α

2
/εµ)tem2 with Vnew11 = Vtem, the dispersion 

type is changed. This is similar to the nondispersive 

Zakharenko waves discussed above. However, one deals 

here with two different mechanisms for the phenomenon 

of Vnew11 = Vtem and the phenomenon called the 

nondispersive Zakharenko waves. For the first 

phenomenon there is a break when Vnew11 = Vtem leading to 

the change of the dispersion type. On the other hand, the 

nondispersive Zakharenko waves represent extreme 

points inside the same dispersive wave mode and at these 

extreme points, the dispersion types are changed in a 

smooth way with no break. This is the main difference 

between two mechanisms of dispersion type changes.   

 

It is also possible to discuss the dispersion relations 

shown in Figures 2a and 2c in the vicinity of (α
2
/εµ)tem1. 

This is the threshold value of α
2
/εµ at which the 

corresponding fundamental mode looks like a δ-function: 

for the value of α
2
/εµ being slightly below the threshold 

value (α
2
/εµ)tem1, the value of the velocity Vnew39 jumps 

from zero value up to the SH-BAW speed Vtem (curves (4) 

and (3) in Figures 2a and 2c, respectively) and for the 

case when the value of α
2
/εµ is slightly above (α

2
/εµ)tem1 

there is a reverse situation because the value of the 

velocity Vnew39 ~ Vtem falls down to its zero value at the 

cut-off parameter (kd)cut > 0, see curves (5) and (4) in 

Figures 2a and 2c, respectively. This fact can mean that a 

very gentle increase (decrease) in, for instance, an 

external magnetic field can allow us to record in 

experiments the new dispersive SH-wave propagation and 

dramatic changes in the propagation velocity from zero to 

the SH-BAW speed Vtem. These PEM-SH-wave 

fundamental modes look like a soliton kink for α
2
/εµ < 

(α
2
/εµ)tem1 and a soliton anti-kink for α

2
/εµ > (α

2
/εµ)tem1. It 

is even possible to say that there is a singular dark shape 

soliton for α
2
/εµ = (α

2
/εµ)tem1. “Soliton” is the reserved 

word for a sole wave known already during a century in 

the physics-chemistry-biology of nonlinear processes 

including the “nanoworld” that is popular for extensive 

study in the last decades. The evidence of the soliton-like 

(quasi-particle) behavior of some fundamental modes of 

purely mechanical waves was reported in theoretical work 

(Zakharenko, 2005c; Zakharenko, 2010b) regarding to the 

two-layer structure consisting of a layer on a substrate.   

 

Finally, it is allowed to discuss the last discovered new 

dispersive PEM-SH-waves propagating with the velocity 

Vnew40. Figures 2b and 2d show the fundamental modes in 
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the case of Vnew40 < Vtem. The dispersion curves in these 

Figures look relatively simpler compared with the 

dispersive behavior of the velocity Vnew39. However, the 

existence of the fundamental modes in the studied case of 

Vnew40 < Vtem depends on the aforementioned threshold 

values (α
2
/εµ)tem1 and (α

2
/εµ)tem2. For α

2
/εµ < (α

2
/εµ)tem1 

there are weakly dispersive SH-waves localized just 

below the SH-BAW speed Vtem, Vnew40 ~ Vtem. This case is 

shown by curve (1) in Figure 2b for the PZT-5H–

Terfenol-D composite. For the other composite there also 

exist such weakly dispersive waves for the values of α
2
/εµ 

< (α
2
/εµ)tem1. However, they were not shown in Figure 2d 

because the fundamental modes start at large values of kd 

> 20, for instance, kd ~ 54.1 for α
2
/εµ = 10

–10
 and kd ~ 

54.3 for α
2
/εµ = 10

–6
. These two values of kd are close to 

each other because here Vnew40 ~ Vtem always occurs. In 

this case of α
2
/εµ < (α

2
/εµ)tem1 one deals with the 

dispersion type Vg < Vph because the velocity Vph = Vnew40 

decreases. It is worth mentioning here that the dispersion 

type must change at the threshold value (α
2
/εµ)tem1. For 

the second case of (α
2
/εµ)tem1 < α

2
/εµ < (α

2
/εµ)tem2 there is 

no any dispersion curve with the other dispersion type Vg 

> Vph. This is the peculiarity for the new dispersive SH-

waves defined by dispersion relation (55). This dispersion 

type perhaps exists but not in the studied case of Vnew40 < 

Vtem. Thus, it is possible to state that all the dispersion 

curves shown in Figures 2b and 2d pertain to the third 

case of (α
2
/εµ)tem2 < α

2
/εµ < 1, but curve (1) in Figure 2b. 

The dispersion type is here Vg < Vph anew because it must 

be changed at α
2
/εµ = (α

2
/εµ)tem2. So, complicated 

dispersion relations (50) and (55) shown in Figures 1 and 

2 were graphically investigated and found peculiarities 

were briefly discussed. This allows the author to make the 

conclusive statement below. 

 

CONCLUSION  

 

In summary it is possible to point out that this theoretical 

study has discovered four dispersive new SH-waves. The 

discovered new waves can propagate in the transversely 

isotropic (6 mm) piezoelectromagnetic plates. The studied 

case relates to the homogeneous boundary conditions 

applied for both the upper and lower plate surfaces: σ32 = 

0, φ = φ
f
, D = D

f
, ψ = ψ

f
, and B = B

f
. The obtained 

dispersion relations are shown in Figures 1 and 2 for two 

different composites: PZT-5H–Terfenol-D and BaTiO3–

CoFe2O4. These samples were chosen due to the fact that 

their characteristics are significantly different from each 

other and they were also previously treated in previous 

theoretical investigations that allows for comparison. The 

theoretical study developed in this paper has 

demonstrated and discussed some complicated 

peculiarities that can reveal some trying features of the 

magnetoelectric effect and can be used for constitution of 

different technical devices. This study can be also useful 

for the problems of the nondestructive testing and 

evaluation of PEM plates. It is obvious that plates 

possessing 2D geometry are apt for further 

miniaturization of various technical devices: dispersive 

delay lines, switches, etc. It is expected that slower speeds 

can be preferable, for instance, in dispersive delay line 

devices. Indeed, various devices can be called for both 

conventional electronics and spintronics.  
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